Progress28.ru

IT Новости


09ae9cb0
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Защита кабеля от перегрузки

Глава 3.1 Защита электрических сетей напряжением до 1 кВ

Глава 3.1

ЗАЩИТА ЭЛЕКТРИЧЕСКИХ СЕТЕЙ НАПРЯЖЕНИЕМ ДО 1 кВ

ОБЛАСТЬ ПРИМЕНЕНИЯ, ОПРЕДЕЛЕНИЯ

3.1.1. Настоящая глава Правил распространяется на защиту электрических сетей до 1 кВ, сооружаемых как внутри, так и вне зданий. Дополнительные требования к защите сетей указанного напряжения, вызванные особенностями различных электроустановок, приведены в других главах Правил.

3.1.2. Аппаратом защиты называется аппарат, автоматически отключающий защищаемую электрическую цепь при ненормальных режимах.

ТРЕБОВАНИЯ К АППАРАТАМ ЗАЩИТЫ

3.1.3. Аппараты защиты по своей отключающей способности должны соответствовать максимальному значению тока КЗ в начале защищаемого участка электрической сети (см. также гл. 1.4).

Допускается установка аппаратов защиты, нестойких к максимальным значениям тока КЗ, а также выбранных по значению одноразовой предельной коммутационной способности, если защищающий их групповой аппарат или ближайший аппарат, расположенный по направлению к источнику питания, обеспечивает мгновенное отключение тока КЗ, для чего необходимо, чтобы ток уставки мгновенно действующего расцепителя (отсечки) указанных аппаратов был меньше тока одноразовой коммутационной способности каждого из группы нестойких аппаратов, и если такое неселективное отключение всей группы аппаратов не грозит аварией, порчей дорогостоящего оборудования и материалов или расстройством сложного технологического процесса.

3.1.4. Номинальные токи плавких вставок предохранителей и токи уставок автоматических выключателей, служащих для защиты отдельных участков сети, во всех случаях следует выбирать по возможности наименьшими по расчетным токам этих участков или по номинальным токам электроприемников, но таким образом, чтобы аппараты защиты не отключали электроустановки при кратковременных перегрузках (пусковые токи, пики технологических нагрузок, токи при самозапуске и т. п.).

3.1.5. В качестве аппаратов защиты должны применяться автоматические выключатели или предохранители. Для обеспечения требований быстродействия, чувствительности или селективности допускается при необходимости применение устройств защиты с использованием выносных реле (реле косвенного действия).

3.1.6. Автоматические выключатели и предохранители пробочного типа должны присоединяться к сети так, чтобы при вывинченной пробке предохранителя (автоматического выключателя) винтовая гильза предохранителя (автоматического выключателя) оставалась без напряжения. При одностороннем питании присоединение питающего проводника (кабеля или провода) к аппарату защиты должно выполняться, как правило, к неподвижным контактам.

3.1.7. Каждый аппарат защиты должен иметь надпись, указывающую значения номинального тока аппарата, уставки расцепителя и номинального тока плавкой вставки, требующиеся для защищаемой им сети. Надписи рекомендуется наносить на аппарате или схеме, расположенной вблизи места установки аппаратов защиты.

ВЫБОР ЗАЩИТЫ

3.1.8. Электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения и требования селективности.

Защита должна обеспечивать отключение поврежденного участка при КЗ в конце защищаемой линии: одно-, двух- и трехфазных — в сетях с глухозаземленной нейтралью; двух- и трехфазных — в сетях с изолированной нейтралью.

Надежное отключение поврежденного участка сети обеспечивается, если отношение наименьшего расчетного тока КЗ к номинальному току плавкой вставки предохранителя или расцепителя автоматического выключателя будет не менее значений, приведенных в 1.7.79 и 7.3.139.

3.1.9. В сетях, защищаемых только от токов КЗ (не требующих защиты от перегрузки согласно 3.1.10), за исключением протяженных сетей, например сельских, коммунальных, допускается не выполнять расчетной проверки приведенной в 1.7.79 и 7.3.139 кратности тока КЗ, если обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам проводников, приведенным в таблицах гл. 1.3, аппараты защиты имели кратность не более:

    · 300% для номинального тока плавкой вставки предохранителя;
    · 450% для тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку);
    · 100% для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки);
    · 125% для тока трогания расцепителя автоматического выключателя с регулируемой обратной зависящей от тока характеристикой; если на этом автоматическом выключателе имеется еще отсечка, то ее кратность тока срабатывания не ограничивается.

Наличие аппаратов защиты с завышенными уставками тока не является обоснованием для увеличения сечения проводников сверх указанных в гл. 1.3.

3.1.10. Сети внутри помещений, выполненные открыто проложенными проводниками с горючей наружной оболочкой или изоляцией, должны быть защищены от перегрузки.

Кроме того, должны быть защищены от перегрузки сети внутри помещений:

    · осветительные сети в жилых и общественных зданиях, в торговых помещениях, служебно-бытовых помещениях промышленных предприятий, включая сети для бытовых и переносных электроприемников (утюгов, чайников, плиток, комнатных холодильников, пылесосов, стиральных и швейных машин и т. п.), а также в пожароопасных зонах;
    · силовые сети на промышленных предприятиях, в жилых и общественных зданиях, торговых помещениях — только в случаях, когда по условиям технологического процесса или по режиму работы сети может возникать длительная перегрузка проводников;
    · сети всех видов во взрывоопасных зонах — согласно требованиям 7.3.94.

3.1.11. В сетях, защищаемых от перегрузок (см. 3.1.10), проводники следует выбирать по расчетному току, при этом должно быть обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам, приведенным в таблицах гл. 1.3, аппараты защиты имели кратность не более:

    · 80% для номинального тока плавкой вставки или тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку), — для проводников с поливинилхлоридной, резиновой и аналогичной по тепловым характеристикам изоляцией; для проводников, прокладываемых в невзрывоопасных производственных помещениях промышленных предприятий, допускается 100%;
    · 100% для номинального тока плавкой вставки или тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку), — для кабелей с бумажной изоляцией;
    · 100% для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки) — для проводников всех марок;
    · 100% для тока трогания расцепителя автоматического выключателя с регулируемой обратно зависящей от тока характеристикой — для проводников с поливинилхлоридной, резиновой и аналогичной по тепловым характеристикам изоляцией;
    · 125% для тока трогания расцепителя автоматического выключателя с регулируемой обратно зависящей от тока характеристикой — для кабелей с бумажной изоляцией и изоляцией из вулканизированного полиэтилена.

3.1.12. Длительно допустимая токовая нагрузка проводников ответвлений к короткозамкнутым электродвигателям должна быть не менее:

    · 100% номинального тока электродвигателя в невзрывоопасных зонах;
    · 125% номинального тока электродвигателя во взрывоопасных зонах.

Соотношения между длительно допустимой нагрузкой проводников к короткозамкнутым электродвигателям и уставками аппаратов защиты в любом случае не должны превышать указанных в 3.1.9 (см. также 7.3.97).

Читать еще:  Контроль защиты информации

3.1.13. В случаях, когда требуемая допустимая длительная токовая нагрузка проводника, определенная по 3.1.9 и 3.1.11, не совпадает с данными таблиц допустимых нагрузок, приведенных в гл. 1.3, допускается применение проводника ближайшего меньшего сечения, но не менее, чем это требуется по расчетному току.

МЕСТА УСТАНОВКИ АППАРАТОВ ЗАЩИТЫ

3.1.14. Аппараты защиты следует располагать по возможности в доступных для обслуживания местах таким образом, чтобы была исключена возможность их механических повреждений. Установка их должна быть выполнена так, чтобы при оперировании с ними или при их действии были исключены опасность для обслуживающего персонала и возможность повреждения окружающих предметов.

Аппараты защиты с открытыми токоведущими частями должны быть доступны для обслуживания только квалифицированному персоналу.

3.1.15. Аппараты защиты следует устанавливать, как правило, в местах сети, где сечение проводника уменьшается (по направлению к месту потребления электроэнергии) или где это необходимо для обеспечения чувствительности и селективности защиты (см. также 3.1.16 и 3.1.19).

3.1.16. Аппараты защиты должны устанавливаться непосредственно в местах присоединения защищаемых проводников к питающей линии. Допускается в случаях необходимости принимать длину участка между питающей линией и аппаратом защиты ответвления до 6 м. Проводники на этом участке могут иметь сечение меньше, чем сечение проводников питающей линии, но не менее сечения проводников после аппарата защиты.

Для ответвлений, выполняемых в труднодоступных местах (например, на большой высоте), аппараты защиты допускается устанавливать на расстоянии до 30 м от точки ответвления в удобном для обслуживания месте (например, на вводе в распределительный пункт, в пусковом устройстве электроприемника и др.). При этом сечение проводников ответвления должно быть не менее сечения, определяемого расчетным током, но должно обеспечивать не менее 10% пропускной способности защищенного участка питающей линии. Прокладка проводников ответвлений в указанных случаях (при длинах ответвлений до 6 и до 30 м) должна производиться при горючих наружных оболочке или изоляции проводников — в трубах, металлорукавах, или коробах, в остальных случаях, кроме кабельных сооружений, пожароопасных и взрывоопасных зон, — открыто на конструкциях при условии их защиты от возможных механических повреждений.

3.1.17. При защите сетей предохранителями последние должны устанавливаться на всех нормально незаземленных полюсах или фазах. Установка предохранителей в нулевых рабочих проводниках запрещается.

3.1.18. При защите сетей с глухозаземленной нейтралью автоматическими выключателями расцепители их должны устанавливаться во всех нормально незаземленных проводниках (см. также 7.3.99).

При защите сетей с изолированной нейтралью в трехпроводных сетях трехфазного тока и двухпроводных сетях однофазного или постоянного тока допускается устанавливать расцепители автоматических выключателей в двух фазах при трехпроводных сетях и в одной фазе (полюсе) при двухпроводных. При этом в пределах одной и той же электроустановки защиту следует осуществлять в одних и тех же фазах (полюсах).

Расцепители в нулевых проводниках допускается устанавливать лишь при условии, что при их срабатывании отключаются от сети одновременно все проводники, находящиеся под напряжением.

3.1.19. Аппараты защиты допускается не устанавливать, если это целесообразно по условиям эксплуатации, в местах:

    1) ответвления проводников от шин щита к аппаратам, установленным на том же щите; при этом проводники должны выбираться по расчетному току ответвления;
    2) снижения сечения питающей линии по ее длине и на ответвлениях от нее, если защита предыдущего участка линии защищает участок со сниженным сечением проводников или если незащищенные участки линии или ответвления от нее выполнены проводниками, выбранными с сечением не менее половины сечения проводников защищенного участка линии;
    3) ответвления от питающей линии к электроприемникам малой мощности, если питающая их линия защищена аппаратом с уставкой не более 25 А для силовых электроприемников и бытовых электроприборов, а для светильников — согласно 6.2.2;
    4) ответвления от питающей линии проводников цепей измерений, управления и сигнализации, если эти проводники не выходят за пределы соответствующих машин или щита или если эти проводники выходят за их пределы, но электропроводка выполнена в трубах или имеет негорючую оболочку.

Не допускается устанавливать аппараты защиты в местах присоединения к питающей линии таких цепей управления, сигнализации и измерения, отключение которых может повлечь за собой опасные последствия (отключение пожарных насосов, вентиляторов, предотвращающих образование взрывоопасных смесей, некоторых механизмов собственных нужд электростанций и т. п.). Во всех случаях такие цепи должны выполняться проводниками в трубах или иметь негорючую оболочку. Сечение этих цепей должно быть не менее приведенных в 3.4.4.

Приложение С (справочное). Допустимый максимальный ток, защита проводов и кабелей в электрооборудовании машин от перегрузок и сверхтоков

Допустимый максимальный ток, защита проводов и кабелей в электрооборудовании машин от перегрузок и сверхтоков

Настоящее приложение предназначено для того, чтобы дать дополнительную информацию, необходимую для выбора размеров проводов, когда указанные в таблице 5 условия (раздел 13) должны быть изменены (примечания к таблице 5).

С.1 Общие рабочие условия

С.1.1 Температура окружающего воздуха

Допустимые максимальные токи для изолированных ПВХ проводов в соответствии с таблицей 5 относятся к температуре окружающего воздуха 40°С.

Таблица С.1 — Поправочные коэффициенты-множители

Температура окружающего воздуха, °С

Примечание — Поправочные коэффициенты-множители взяты из МЭК 60364-5-523 [37], таблица 52-D1.

С.1.2 Способы разводки

В промышленных машинах предполагаются следующие классические способы проводки между кожухами и отдельными элементами (используемые обозначения соответствуют МЭК 60364-5-523 [37]; рисунок С.1):

В1 — использование коробов и кабель-несущих каналов (3.5 и 3.7) для поддержки и защиты проводов (одножильные кабели);

В2 — то же, что В1, но с многожильными кабелями;

С — кабели, прокладываемые на стенах без коробов и каналов;

Е — кабели, прокладываемые в открытых горизонтальных или вертикальных трассах (шинопроводах) (3.4)

Приведенные в таблице 5 значения допустимого максимального тока базируются на:

— трехфазном кабеле переменного тока под нагрузкой с поперечным сечением 0,75 мм2 и более;

— паре под нагрузкой (двух проводов) в цепях управления постоянного тока для поперечных сечений от 0,2 до 0,75 мм2.

Таблица С.2 — Поправочные коэффициенты-множители для группирования

Способ укладки (рисунок С.1)

Число кабелей/пар под нагрузкой

Трехфазный кабель переменного тока (см. примечание 1)

Е (несколько слоев)

Пара постоянного тока (независимо от способа, см. примечание 2)

Примечание — Коэффициенты-множители взяты из МЭК 60364-5-523 [37] и МЭК 60287 [15].

Читать еще:  Как снять защиту текста в ворде

Когда укладывается большое число кабелей/пар под нагрузкой, значения таблицы 5 следует умножить на поправочные коэффициенты из таблиц С.2 и С.3.

Таблица С.3 — Поправочные коэффициенты-множители для многожильных кабелей сечением до 10 мм2.

Число проводов/пар под нагрузкой

Переменный ток (провод сечением менее 1 мм2, см. примечание 1)

Постоянный ток (пара проводов сечением 0,2-0,75 мм, см. примечание 2)

Примечание — Коэффициенты-множители взяты из МЭК 60364-5-523 [37].

С.1.4 Классификация проводников

Таблица С.4 — Классификация проводников

Жесткий провод медный или алюминиевый с круглым поперечным сечением до 16 мм2

Только для стационарных установок без вибрации

Проводник медный или алюминиевый с минимальным числом жил сечением >25 мм2

Гибкий медный проводник, состоящий из многих тонких жил

Для машинных установок с вибрацией; соединение с подвижными частями. Для частых движений

Гибкий медный проводник, состоящий из многих очень тонких жил

Примечание — Таблица взята из МЭК 60228 [12] и МЭК 60228А [13].

С.2 Использование в прерывистом режиме

Применение в периодическом или перемежающемся режиме, когда происходят частые двигательные запуски, требует расчета действительной величины термического эквивалентного тока I_q , чтобы установить, превышает ли он ток установившегося режима I_b. В случае, когда I_q>I_b, для выбора кабеля следует использовать I_q вместо I_b. Для координации с защитой от сверхтоков можно также применять эту замену. I_q может быть рассчитан по формуле

С.3 Координация между проводами и защитными устройствами

С.3.1 Во всех случаях необходимо проверить следующие условия:

С.3.2 Когда устройство защиты от сверхтоков должно обеспечивать защиту от перегрузки, необходимо проверить следующие соотношения:

С.3.3 Когда устройство защиты от сверхтоков должно обеспечивать защиту только от коротких замыканий, I_n может превышать I_z и I_2 может превышать 1,45 х I_z.

Однако необходимо учитывать, что I_n>I_z, а также то, что температура при коротком замыкании может превысить максимальную температуру провода. Это особенно характерно для провода сечением менее 16 vм2. Расчеты приведены в С.4.

С.4 Зашита проводов от сверхтоков

Все провода должны быть защищены от сверхтоков (7.2) устройствами защиты, которые включаются во все активные провода таким образом, чтобы любой ток короткого замыкания, проходящий по кабелю, был прерван прежде, чем провод достигнет опасной температуры. Например, для проводов с ПВХ изоляцией, имеющих температуру в установившемся режиме 70°С, эта температура повышается от 70 до 160°С менее чем за 5 с при прохождении тока короткого замыкания по этому проводу.

Примечание — Относительно нулевых проводов см. 7.2.2.

На практике требование 7.2 соблюдено, если устройства защиты для тока I размыкают цепь за промежуток времени, который ни в коем случае не превышает время t.

Время t рассчитывают по формуле

Использование плавких предохранителей с характеристиками g(G) или g(M) (ГОСТ Р 50339.0) и выключателей с характеристиками В и С в соответствии с ГОСТ Р 50345 гарантирует соблюдение этого требования. Это требование применяют, если номинальный ток I_n выбирают по таблице 5, где I_n >
D (справочное). Понятия функций управления в случае аварииСодержание
Государственный стандарт РФ ГОСТ Р МЭК 60204-1-99 «Безопасность машин. Электрооборудование машин и механизмов. Часть.

Вы можете открыть актуальную версию документа прямо сейчас.

Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.

Объявления

Если вы интересуетесь релейной защитой и реле, то подписывайтесь на мой канал

Защита от перегрузки кабеля 6-20кВ

Чтобы отправить ответ, вы должны войти или зарегистрироваться

Сообщений 5

1 Тема от Aleks_f 2017-11-22 11:30:47

  • Aleks_f
  • Пользователь
  • Неактивен
  • Зарегистрирован: 2011-04-21
  • Сообщений: 97
  • Репутация : [ 0 | 0 ]

Тема: Защита от перегрузки кабеля 6-20кВ

Здравствуйте!
Есть ли нормативы, по которым требуется защищать КЛ 6-20кВ от перегрузки?

2 Ответ от matu 2017-11-22 19:33:21

  • matu
  • Пользователь
  • Неактивен
  • Зарегистрирован: 2013-02-21
  • Сообщений: 712
  • Репутация : [ 0 | 0 ]

Re: Защита от перегрузки кабеля 6-20кВ

На сигнал или на отключение? Пункт 3.2.2 ПУЭ требует, чтобы реагирования на опасные, ненормальные режимы работы элементов электрической системы (например, перегрузку, повышение напряжения в обмотке статора гидрогенератора).
Но с другой сторону это же ПУЭ предполагает требования по выбору кабелей, который проверяются по току послеаварийного режима, т.е. запас уже заложен.

3 Ответ от Aleks_f 2017-11-27 08:31:33

  • Aleks_f
  • Пользователь
  • Неактивен
  • Зарегистрирован: 2011-04-21
  • Сообщений: 97
  • Репутация : [ 0 | 0 ]

Re: Защита от перегрузки кабеля 6-20кВ

Вот я тоже к такому выводу пришел.
И на практике встречаю, что в сетевых компаниях на ПС и в РП делают МТЗ только от КЗ..

4 Ответ от RIN 2017-11-27 09:43:33

  • RIN
  • Пользователь
  • Неактивен
  • Зарегистрирован: 2016-08-23
  • Сообщений: 246
  • Репутация : [ 0 | 0 ]

Re: Защита от перегрузки кабеля 6-20кВ

Не представляю себе присоединение, на любых подстанциях, в том числе и сетевых, на котором была защита только от к.з..
Уставка защиты от к.з. великовата.
В любом случае наверное должна быть МТЗ отстроенной от максимального тока нагрузки.

Присоединяйтесь. Мы в социальных сетях и на Ютуб.

5 Ответ от doro 2017-11-27 09:53:27 (2017-11-27 09:59:09 отредактировано doro)

  • doro
  • свободный художник
  • Неактивен
  • Откуда: г. Краснодар
  • Зарегистрирован: 2011-01-08
  • Сообщений: 8,838

Re: Защита от перегрузки кабеля 6-20кВ

Вряд ли нормативными документами это предусмотрено. Они строились на основе нашего соцреализма. Ну как ЗП выполнить на РТМ+РТМ или РТ-85? Еще понимаю АП-50. ток превышает номинальный в двадцать раз — работает отсечка. В 10 раз — тепловой элемент с выдержкой времени несколько секунд, в два раза — десятки секунд, а то и минуты. Собственно, подобное можно выполнить и на любой МПЗ с инверсной время-токовой характеристикой. Да и на РТ-85 можно поиграть. РТВ для этого никак не подходит — очень уж большая неопределенность характеристик.
Диспетчер должен контролировать переток по линии, в том числе с учетом допустимой отстройки от тока срабатывания МТЗ. А вот если использовать современные МП УРЗА, можно поискать возможность выделения наиболее чувствительной ступени МТЗ на сигнал. Все равно защита фидера не сможет выполнить разумное отключение части нагрузки. А если фидер перегружен — тому есть какие-то веские причины, вплоть до аварийной ситуации. И в этой аварийной ситуации отключаем все. Хорошо ли это?

Как выбрать сечение проводов и кабелей — Выбор максимальной токовой защиты

Содержание материала

При эксплуатации электрической сети в отдельных ее участках бывают нарушения нормального режима работы и в проводниках могут возникнуть токи, превышающие расчетные. Возможно, например, увеличение тока линии в связи с перегрузкой двигателя. Увеличение тока при перегрузке, как правило, бывает небольшим, в пределах не выше нескольких десятков процентов номинальной нагрузки. Другой вид нарушения нормальной работы сети — короткое замыкание — связан в большинстве случаев с резким увеличением тока до нескольких десятков и даже сотен тысяч ампер.
Короткое замыкание может вызвать пожар из-за воспламенения покровов провода. Еще более опасные последствия может повлечь за собой короткое замыкание во взрывоопасном помещении, где приходится считаться с возможностью взрыва.
Несравненно менее опасна для проводников перегрузка. Кратковременная перегрузка проводников не представляет для них и для окружающей среды непосредственной опасности. Однако длительные перегрузки ведут к износу изоляции и снижению ее изоляционных свойств.
Защита сети от коротких замыканий является обязательной во всех случаях, и время ее действия должно быть минимальным для уменьшения теплового действия токов короткого замыкания.
Перегрузка является менее опасной, и в ряде случаев допускается отказ от применения защиты проводов и кабелей от перегрузки.
Защита проводов и кабелей электрических сетей напряжением до 1 000 В осуществляется плавкими предохранителями. автоматическими выключателями с тепловыми и электромагнитными расцепителя ми и магнитными пускателями или контактерами с тепловыми реле.
Наиболее простым и дешевым защитным аппаратом является плавкий предохранитель. Его защитным элементом является плавкая вставка, включаемая последовательно в цепь тока. При увеличении тока линии выше определенной величины температура плавкой вставки повышается и происходит ее расплавление, цепь тока разрывается, предохраняя провод линии от недопустимого перегрева.
Выбор предохранителей. Плавкая вставка предохранителя выбирается по номинальному току. Шкалы номинальных токов плавких вставок наиболее употребительных предохранителей типов ПР-2 и ПН-2 приведены в табл. П-7.
При выборе плавких предохранителей следует обеспечить выполнение двух условий.
Первое условие — номинальный ток плавкой вставки (А) должен быть не меньше длительного расчетного тока линии
(7)
где /дл — длительный расчетный ток линии, А
Второе условие связано с необходимостью предотвратить перегорание плавкой вставки от кратковременных толчков тока, вызванных пуском двигателей с коротко- замкнутым ротором, так как при пуске двигателя с короткозамкнутым ротором возникает пусковой ток, превышающий номинальный ток двигателя в 4—7 раз.
Величина пускового тока двигателя (А) определяется по формуле
(8)
где /н.дв — номинальный ток двигателя, A; Ki— кратность пускового тока, показывающая, во сколько раз пусковой ток двигателя больше номинального. Величины /н.дп и Ki определяются по каталогам или справочникам [Л. 6].
Чтобы плавкая вставка не расплавилась от пускового тока при пуске двигателя, должно выполняться одно из следующих условий.
При защите ответвления к одиночному двигателю с нечастыми пусками при длительности пускового периода не более 2—2,5 с (двигатели металлообрабатывающих станков, вентиляторов, насосов и т. п.)
(9)
При защите ответвления к одиночному двигателю с частыми пусками (двигатели кранов) или с большой длительностью пускового периода (двигатели центрифуг, дробилок, нагруженных транспортеров и т. п.)
(10)
При защите магистрали, питающей силовую или смешанную нагрузку,
(И)
В последних трех формулах /п — пусковой ток двигателя, А; /„р — максимальный кратковременный ток линии (А), равный
(12)
где /п — пусковой ток двигателя, при пуске которого кратковременный ток линии достигает наибольшей величины, А; /дЛ — длительный расчетный ток линии до момента пуска двигателя, определяемый без учета рабочего тока пускаемого двигателя, А.

* Величина знаменателя в формуле (10) принимается в зависимости от условий пуска двигателя: чем тяжелее пуск, тем меньше принимается знаменатель.

При выборе плавкой вставки ее номинальный ток должен удовлетворять соотношению (7) и одному из трех соотношений: (9), (10) или (11) в зависимости от условий пуска двигателя и от назначения линии (ответвление к двигателю или магистраль).

Результаты выбора плавких вставок предохранителя в примере 5 показывают, что предохранители не защищают двигатель с короткозамкнутым ротором от перегрузки. Действительно, номинальный ток двигателя 135 А, а номинальный ток плавких предохранителей 400 А. Если проводники питающей двигатель линии выбраны по номинальному току двигателя, как это обычно и делается, то они также не будут защищены от перегрузки. Таким образом, плавкий предохранитель в рассматриваемом случае защищает двигатель и проводники только от нагревания токами коротких замыканий.

Защита от перегрузки.

При необходимости иметь защиту от перегрузки применяют автоматические выключатели с тепловыми расцепителями или магнитные пускатели с тепловыми реле. Тепловые элементы расцепителя или реле нагреваются медленно и действуют только при длительном протекании тока. Пусковой ток двигателя не успевает нагреть эти элементы до температуры, при которой происходит действие тепловой защиты.
Отсюда следует, что тепловые расцепители автоматического выключателя и нагревательные элементы тепловых реле, установленных в магнитных пускателях, следует выбирать только по длительному расчетному току
(А) линии
(13)
Тепловая защита, являясь хорошей защитой от перегрузки, плохо защищает от коротких замыканий. Дело в том, что тепловые расцепители и нагревательные элементы тепловых реле действуют медленно и провода линии или проводники обмоток двигателя при протекании через них тока короткого замыкания могут быть повреждены прежде, чем сработает тепловая защита.
В связи с этим тепловая защита должна дополняться защитой от короткого замыкания. Последняя может быть выполнена в виде плавких предохранителей. В случае применения автоматического выключателя (автомата) с тепловыми расцепителями для защиты от перегрузки целесообразно для защиты от коротких замыканий применять электромагнитные расцепители. Такие автоматические выключатели с комбинированными расцепителями, содержащие тепловые и электромагнитные расцепители, получили широкое распространение. Они одновременно осуществляют защиту как от перегрузки, так и от короткого замыкания.
Номинальный ток (А) электромагнитного и комбинированного расцепителей автоматического выключателя выбирается по длительному расчетному току линии
(14)
Кроме того, указанные расцепители должны быть проверены по наибольшей величине кратковременного то-
ка линии при пуске двигателей. Понятно, что при пуске двигателей автоматический выключатель не должен отключаться. Это будет обеспечено, если ток срабатывания (А) (или ток трогания) расцепителя удовлетворяет условию
(15)
где /кр — наибольший кратковременный ток линии. А; 1,25 — коэффициент запаса, учитывающий разброс характеристик расцепителей автомата.
Необходимо отметить, что в зависимости от конструктивного выполнения некоторые расцепители допускают регулировку величины тока срабатывания; для других исполнений величина тока срабатывания не регулируется.

Ссылка на основную публикацию